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PACSIN-family proteins are cytoplasmic proteins that have vesicle-transport,

membrane-dynamics, actin-reorganization and microtubule activities. Here, the

N-terminal F-BAR domain of mouse PACSIN 3, which contains 341 amino acids,

was successfully cloned, purified and crystallized. The crystal of PACSIN 3

(1–341) diffracted to 2.6 Å resolution and belonged to space group P21, with

unit-cell parameters a = 46.9, b = 54.7, c = 193.7 Å, �= 90, �= 96.9, � = 90�. These

data should provide further information on PACSIN-family protein structures.

1. Introduction

BAR-domain proteins function in various membrane-remodelling

processes such as vesicle budding, cell division and membrane traf-

ficking (Gallop et al., 2006; Bhatia et al., 2009; Masuda et al., 2006;

Takei et al., 1999; Farsad et al., 2001; Mattila et al., 2007). These

proteins can deform membranes into tubules via their banana-like

dimer concave surface (Peter et al., 2004), and the diameter of the

tubules matches the curvature of the dimer concave surface (Itoh et

al., 2005; Gallop et al., 2006; Heath & Insall, 2008; Masuda et al.,

2006). There are three distinct families of BAR-domain proteins:

N-BAR (N-terminal amphipathic helix BAR), F-BAR (EFC/F-BAR,

Fes/CIP4 homology BAR) and I-BAR (inverse-BAR). In comparison

to N-BAR and I-BAR proteins, F-BAR proteins possess a distinctly

shallower curvature and normally generate low-curvature membrane

tubules (Itoh et al., 2005; Fütterer & Machesky, 2007; Shimada et al.,

2007; Henne et al., 2007; Masuda et al., 2006; Peter et al., 2004).

PACSINs, which are a branch of the F-BAR-domain protein family,

are cytoplasmic proteins that function in vesicle transport, endocy-

tosis (Damke et al., 1994; Hinshaw & Schmid, 1995; Takei et al., 1995,

1999) and actin reorganization and as components of the centrosome

involved in microtubule dynamics (Modregger et al., 2000; Qualmann

& Kelly, 2000; Braun et al., 2005; Kessels et al., 2006; Grimm-Günter

et al., 2008). The PACSIN-family proteins consist of three isoforms:

neurospecific PACSIN 1, the ubiquitously expressed PACSIN 2, and

PACSIN 3, which is primarily found in lung and muscle tissues

(Plomann et al., 1998; Qualmann et al., 1999; Ritter et al., 1999;

Modregger et al., 2000). PACSINs 1 and 2 share a conserved structure

that contains an N-terminal �-helical region, a C-terminal Src

homology 3 (SH3) domain and potential asparagine–proline–

phenylalanine (NPF) motif(s) that are essential for binding to Eps15

homology domain proteins (Paoluzi et al., 1998; Modregger et al.,

2000). The three-dimensional structures of the F-BAR domains of

PACSINs 1 and 2 from human, mouse and Drosophila have pre-

viously been reported (Wang et al., 2009; Rao et al., 2010; Plomann et

al., 2010; Edeling et al., 2009) and revealed that the F-BAR domains

of PACSINs 1 and 2 share a conserved helix-bundle structure with a

unique wedge loop. However, the structure of PACSIN 3 has not been

reported to date.
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PACSIN 3 differs from PACSIN 1 and PACSIN 2 in containing a

short multi-proline region and in lacking the NPF motifs (Modregger

et al., 2000). Human and mouse PACSIN 3 encode 424 amino acids

and have high sequence identity (Sumoy et al., 2001). Amino-acid

sequence alignment reveals that the F-BAR domain of mouse

PACSIN 3 shares 55 and 60% sequence identity with those of mouse

PACSINs 1 and 2, respectively (Fig. 1). PACSIN 3 shows different

functions in cells compared with PACSINs 1 and 2 (Sumoy et al., 2001;

Cuajungco et al., 2006; Modregger et al., 2000). Overexpression of

PACSIN 3 can increase transport of adipocyte glucose in the clathrin-

coated pit pathway (Roach & Plomann, 2007). It has been demon-

strated that PACSIN 3 specifically affects the endocytosis of TRPV4

and subsequently regulates the subcellular localization of TRPV4

(Cuajungco et al., 2006). A recent study showed that PACSIN 3

influences the columnar organization of the notochord during early

development in zebrafish (Edeling et al., 2009). Therefore, structure

determination of the F-BAR domain of PACSIN 3 will help us to

further understand its functions.

Here, we expressed, purified and crystallized mouse PACSIN 3

F-BAR domain (1–341). Preliminary X-ray diffraction analysis of this

protein should provide us with further information on PACSIN-

family protein structures and help us to understand the molecular

mechanism of how PACSIN proteins work in their related activities.

2. Methods and results

2.1. Cloning and protein expression

PACSIN 3 (1–341) was amplified by polymerase chain reaction

(PCR) using the cDNA of mouse pacsin 3 (a gift from Professor

Plomann) as a template. The PCR product was digested with BamHI

and HindIII and then cloned into the same restriction-enzyme sites

of a pET28a vector. The resulted plasmid was confirmed by DNA

sequencing and then transformed into Escherichia coli strain BL21

(DE3) and plated onto a Luria–Bertani broth (LB) agar plate con-

taining 100 mg �1 kanamycin. Cells from a single clone were grown
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Figure 1
Amino-acid sequence alignment of mouse PACSINs. Sequence alignment was performed using ClustalX and ESPript (Gouet et al., 1999). The secondary structure of
PACSIN 1 is shown at the top: �-helices are displayed as squiggles and �-turns as TT. Strictly conserved residues are shown in white lettering on a red background. Similar
residues are indicated in red.



overnight at 310 K in LB medium until the OD600 reached 0.6;

0.5 mM isopropyl �-d-1-thiogalactopyranoside (IPTG) was then

added and culture continued for a further 6 h at 303 K. Cells were

harvested by centrifugation at 5000 rev min �1 for 10 min at 277 K

and frozen at 193 K.

2.2. Protein purification

The cells were resuspended in binding buffer consisting of 50 mM

HEPES pH 7.5, 500 mM NaCl and 5 mM imidazole and then soni-

cated. The lysate was centrifuged at 18 000 rev min�1 for 30 min at

277 K. The supernatant was filtered through a 0.22 mm filter and

applied onto a 5 ml Ni2+ HiTrap affinity column (GE Healthcare,

USA). The Ni2+ HiTrap affinity column was washed with 15 column

volumes of binding buffer to remove nonspecifically bound proteins

and PACSIN 3 was eluted in binding buffer containing 500 mM

imidazole. Finally, peak fractions of PACSIN 3 (1–341) were pooled,

concentrated to 2 ml and further purified on a Superdex 75 gel-

filtration column (GE Healthcare) equilibrated in 500 mM NaCl,

10 mM HEPES pH 7.5. The final yield of purified protein was 5 mg

per litre of culture, with a purity of 95% (Fig. 2).

2.3. Crystallization

The purified protein was concentrated to 10 mg ml�1 for crystal-

lization. Initial crystallization experiments were performed at 293 K

by the sitting-drop vapour-diffusion method in 96-well plates using

the PEG/Ion, Crystal Screen, Crystal Screen 2 and Index kits from

Hampton Research. Each droplet consisted of 1 ml protein solution

and 1 ml reservoir solution and was equilibrated against 150 ml

reservoir solution as previously reported (Bai et al., 2010).

Crystals were obtained under the condition 200 mM potassium

thiocyanate, 20% PEG 3350 pH 7.0 (Fig. 3a). Further crystal opti-

mization was improved by fine-tuning the pH in the range 5.0–9.0 (in

0.1 pH-unit increments) and adding different additives (5% glycerol,

10 mM CaCl2, 10 mM MgCl2 or 1% ethanol). After crystal optimi-

zation, better diffracting crystals were obtained using 200 mM

potassium thiocyanate, 100 mM HEPES pH 7.3, 100 mM CaCl2,

20%(w/v) PEG 3350 at 293 K within one week (Fig. 3b).

2.4. Diffraction data collection

For data collection, crystals were soaked in cryoprotectant solution

supplemented with 30%(v/v) glycerol. The crystal was mounted in a

large cryoloop and flash-cooled at 100 K in a nitrogen stream. The

crystal-to-detector distance was 300 mm. X-ray diffraction data were

collected using a MAR 345 image-plate detector on beamline 3W1A

at Beijing Synchrotron Radiation Facility. A total of 500 frames of
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Figure 2
SDS–PAGE analysis of purified PACSIN 3 (1–341). M, marker (labelled in kDa);
lane 1, purified PACSIN 3 (1–341) after a two-step purification.

Figure 3
(a) Initial crystals of PACSIN 3 (1–341). (b) Optimized crystal of PACSIN 3 (1–341).

Table 1
Crystallographic parameters and data-collection statistics for PACSIN 3.

Values in parentheses are for the last shell.

Wavelength (Å) 0.97924
Resolution (Å) 30–2.6 (2.67–2.60)
Completeness (%) 95.2 (75.1)
Rmerge† (%) 5.6 (30.2)
hI/�(I)i 35.4 (3.4)
Space group P21

Unit-cell parameters (Å) a = 46.9, b = 54.7, c = 193.7
No. of observed reflections 133167
No. of unique reflections 28175
Molecules in asymmetric unit 2
VM (Å3 Da�1) 3.33
Solvent content (%) 63.04

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ.



0.5� oscillation were measured with 10 s exposure per frame. All data

were processed with HKL-2000 (Otwinowski & Minor, 1997).

The crystal of mouse PACSIN 3 (1–341) diffracted to 2.6 Å reso-

lution (Fig. 4). The crystal belonged to space group P21, with unit-cell

parameters a = 46.9, b = 54.7, c = 193.7 Å, �= 90, �= 96.9, � = 90�. The

unit-cell parameters are consistent with the presence of two mole-

cules in the asymmetric unit. Data-collection statistics are given in

Table 1.
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Figure 4
Diffraction pattern of the PACSIN 3 (1–341) crystal.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pu5348&bbid=BB36

